Analisi fattoriale esplorativa

Ricerca dei fattori latenti

Prerequisiti

Prima di effettuare un’analisi esplorativa dovrai scegliere la matrice di partenza. Potrai eseguire l’analisi sulla matrice di correlazioni o sulla matrice di varianze e covarianze. Se disponi del dataset potrai costruire entrambe le matrici. In passato si utilizzava solo la matrice di correlazione. Il vantaggio di tale matrice è che non crea problemi nel caso tu abbia domande con scale differenti; tuttavia essa non consente di effettuare test successivi. Inoltre dovrai effettuare dei test per verificarne la fattibilità.
Leggi tutto “Analisi fattoriale esplorativa”

Analisi fattoriale

Come analizzare le risposte ad un questionario

L’analisi fattoriale è un insieme di tecniche statistiche utilizzate per comprendere quali siano i fattori latenti.
I fattori latenti (o variabili latenti) sono per esempio felicità, QI, sentimenti, qualità di un servizio, ovvero concetti astratti che non sono direttamente misurabili.

L’analisi fattoriale si divide in due fasi differenti:

L’analisi fattoriale esplorativa (AFE) in cui cerchiamo le variabili latenti (es. soddisfazione, felicità, ecc.).

L’analisi fattoriale confermativa (AFC) permette di validare le ipotesi effettuate sulle relazioni tra variabili osservate e latenti, essa è quindi utilizzata quando si hanno idee abbastanza chiare su quali fattori influenzano quali variabili.

Leggi tutto “Analisi fattoriale”

3 passi fondamentali per la preparazione dei dati

Chi ben comincia è già a metà dell’opera

Se hai raccolto i tuoi dati ricordati che la qualità dei dati è importantissima per la tua analisi.

Prima di eseguire qualsiasi test o modello è necessario:

  1.  Effettuare le statistiche descrittive
  2.  Controllare gli outlier
  3.  Comprendere dalle statistiche descrittive se vi sono problemi, come ad esempio degli NA (dati mancanti).

Se tutti questi 3 passi sono stati eseguiti correttamente, avrai dei dati che, statisticamente parlando, sono buoni per la analisi e avrai un idea, grazie alle statistiche descrittive, di come sia composto il tuo campione. Da ciò potrai formulare ipotesi da testare con i modelli o test.

Leggi tutto “3 passi fondamentali per la preparazione dei dati”

Outlier: valori anomali, come individuarli e trattarli?

Outlier osservazioni che falsano i risultati

Gli outlier sono valori numericamente distanti dal resto dei dati raccolti, ovvero sono valori estremi. Le analisi che derivano da campioni contenenti outlier presenteranno risultati anomali. Il consulente statistico si occupa di comprendere la natura degli outlier, in base alla quale applicherà modelli o test più robusti per l’analisi che consentiranno di ottenere risultati attendibili.

Attenzione gli outlier non sono per forza errori!

Leggi tutto “Outlier: valori anomali, come individuarli e trattarli?”